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Probability and Statistics Chapter 3: Parametric families of univariate distributions

CHAPTER 3: PARAMETRIC FAMILIES OF UNIVARIATE DISTRIBUTIONS
1 Why do we need distributions?

1.1 Some practical uses of probability distributions

1.2 Related distributions

1.3 Families of probability distributions
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2 Discrete distributions

2.1 Introduction

2.2 Discrete uniform distributions

2.3 Bernoulli and binomial distribution
2.4 Hypergeometric distribution

2.5 Poisson distribution
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3 Continuous distributions

3.1 Introduction

3.2 Uniform or rectangular distribution
3.3 Normal distribution

3.4 Exponential and gamma distribution

3.5 Beta distribution
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4 Where discrete and continuous distributions meet
4.1 Approximations
4.2 Poisson and exponential relationships
4.3 Deviations from the ideal world ?
4.3.1 Mixtures of distributions

4.3.2 Truncated distributions
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5 Conditional distributions and stochastic independence
5.1 Conditional distribution functions for discrete random variables
5.2 Conditional distribution functions for continuous random

variables
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1 Why do we need distributions?

Probability distributions are a fundamental concept in statistics. They are
used both on a theoretical level and a practical level.

1.1 Some practical uses of probability distributions

e To calculate confidence intervals for parameters and to calculate critical
regions for hypothesis tests.

e For univariate data, it is often useful to determine a reasonable
distributional model for the data.
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e Statistical intervals and hypothesis tests are often based on specific
distributional assumptions. Before computing an interval or test based on a
distributional assumption, we need to verify that the assumption is justified
for the given data set. In this case, the distribution does not need to be the
best-fitting distribution for the data, but an adequate enough model so that
the statistical technique yields valid conclusions.

e Simulation studies with random numbers generated from using a specific
probability distribution are often needed.
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Recall

e For a continuous function, the probability density function (pdf) is the
probability that the variate has the value x. Since for continuous
distributions the probability at a single point is zero, this is often expressed

in terms of an integral between two points.

fbf{n:)dac — Prla< X <}

e For a discrete distribution, the pdf is the probability that the variate takes
the value x.
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 The following is the plot of the normal probability density function.
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1.2 Related distributions

e The cumulative distribution function (cdf) is the probability that the
variable takes a value less than or equal to x. That is

Flr)=PriX <z =«
0 For a continuous distribution, this can be expressed mathematically as
Flz)= [ fndp
O For a discrete distribution, the cdf can be expressed as

F(z) = i;fm
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* The following is the plot of the normal cumulative distribution function.
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e The horizontal axis is the allowable domain for the given probability
function. Since the vertical axis is a probability, it must fall between zero

and one. It increases from zero to one as we go from left to right on the
horizontal axis.
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* The percent point function (ppf) is the inverse of the cumulative
distribution function.

e For this reason, the percent point function is also commonly referred to as
the inverse distribution function.

O That is, for a distribution function we calculate the probability that the
variable is less than or equal to x for a given x.
O For the percent point function, we start with the probability and
compute the corresponding x for the cumulative distribution.
 Mathematically, this can be expressed as

PriX <Gla)l=«a

or alternatively
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* The following is the plot of the normal percent point function.
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e Since the horizontal axis is a probability, it goes from zero to one. The
vertical axis goes from the smallest to the largest value of the cumulative
distribution function.

K Van Steen 13



Probability and Statistics Chapter 3: Parametric families of univariate distributions

e Survival functions are most often used in reliability and related fields. The
survival function is the probability that the variate takes a value greater
than x.

S{lz) =Pr|X >z =1—F(x)

e The following is the plot of the normal distribution survival function.
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e For a survival function, the y value on the graph starts at 1 and

monotonically decreases to zero.
e The survival function should be compared to the cumulative distribution

function.
e The hazard function is the ratio of the probability density function to the

survival function, S(x).
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e The following is the plot of the normal distribution hazard function.

Mormal Hezard

Hazamd

e Hazard plots are most commonly used in reliability applications (sometimes
referred to as conditional failure density function).
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e The cumulative hazard function is the integral of the hazard function. It can
be interpreted as the probability of failure at time x given survival until time
X.

H(z) = i hp)dp

e This can alternatively be expressed as

H(z) = —In(1 — F{z))
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* The following is the plot of the normal cumulative hazard function.
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e Cumulative hazard plots are most commonly used in reliability applications.
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1.3 Families of distributions

 Many probability distributions are not a single distribution, but are in fact a
family of distributions. This is due to the distribution having one or more
shape parameters.

e Shape parameters allow a distribution to take on a variety of shapes,
depending on the value of the shape parameter.

e These distributions are particularly useful in modeling applications since
they are flexible enough to model a variety of data sets.
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Example: the Weibull distribution

There are many probability distributions beyond the binomial and
normal distributions used to model data in various circumstances.

Weibull distributions are used to model time to failure/product
lifetime and are common in engineering to study product reliability.

Product lifetimes can be measured in units of time, distances, or number of
cycles for example. Some applications include:

a2 Quality control (breaking strength of products and parts, food shelf life)
a2 Maintenance planning (scheduled car revision, airplane maintenance)
o Cost analysis and control (number of returns under warranty, delivery time)

o Research (materials properties, microbial resistance to treatment)
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e The Weibull distribution is an example of a distribution that has a shape
parameter.

 The shapes on the next slide include an exponential distribution, a right-
skewed distribution, and a relatively symmetric distribution.

e So although the Weibull distribution has a relatively simple distributional
form (see later), the shape parameter allows the Weibull to assume a wide
variety of shapes.

e This combination of simplicity and flexibility in the shape of the Weibull
distribution has made it an effective distributional model in reliability
applications.

e This ability to model a wide variety of distributional shapes using a
relatively simple distributional form is possible with many other
distributional families as well.
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e The following graph plots the Weibull pdf with the following values for the

shape parameter: 0.5, 1.0, 2.0, and 5.0.
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Density curves of three members of the Weibull family describing a
different type of product time to failure in manufacturing:

Infant mortality: Many products fail
immediately and the remainders last a
long time. Manufacturers only ship the
products after inspection.

Time

Early failure: Products usually fail
shortly after they are sold. The design
or production must be fixed.

Time

Qld-age wear out: Most products
wear out over time, and many fail at
about the same age. This should be
disclosed to customers.

Time
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The standard form of a distribution
Definition

The standard form of any distribution is the form that has location
parameter zero and scale parameter one.

e It is common in statistical software packages to only compute the standard
form of the distribution.

e There are formulas for converting from the standard form to the form with
other location and scale parameters.

e These formulas are independent of the particular probability distribution.
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 The following are the formulas for computing various probability functions
based on the standard form of the distribution. In what follows, the
parameter a refers to the location parameter and the parameter b refers to
the scale parameter. Shape parameters are not included.

Cumulative Distribution Function F(x;a,b) = F((x-a)/b;0,1)
Probability Density Function f(x;a,b) = (1/b)f((x-a)/b;0,1)
Percent Point Function G(a,b) = a + bG(;0,1)
Hazard Function h(x;a,b) = (1/b)h((x-a)/b;0,1)
Cumulative Hazard Function H(x;a,b) = H((x-a)/b;0,1)
Survival Function S(x;a,b) = S((x-a)/b;0,1)
Random Numbers Y(a,b) = a + bY(0,1)
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Note

e Alocation parameter simply shifts the graph left (location parameter is
negative) or right (location parameter is positive) on the horizontal axis

* The effect of a scale parameter greater than one is to stretch the pdf. The
greater the magnitude, the greater the stretching. The effect of a scale
parameter less than one is to compress the pdf. The compressing
approaches a spike as the scale parameter goes to zero.

e Athird characteristic of a distribution is its shape. The shape shows how the
variation is distributed about the location. This tells us if our variation is
symmetric about the mean or if it is skewed or possibly multimodal.
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2 Discrete distributions

2.1 Introduction

Distribution Probability Mass Function Mean Variance Moment (GGenerating
pl) Function
Binomial
binomial(r, p) ( " ) PP e =01, .n np npq (pe" 4+ q)"
Hh
Geometric (i) pg*, x=0,1,--- (i) q/p (i) q/p? (i) p/(1 — ge')
G(p) (ii) pg~ 'y =12, ... (ii) 1/p (it) q/p* (i) pet /(1 — ge*)
. L\— - i ‘\— il I — , -
Hypergeometric . ‘ / np M npg complicated
x n—x : n (N —1)
Hn,a,N) =012 mn(N —a,n) p=a/N
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Distribution Probabilitv Mass Functioen AMean Variance Moment Generating
) Function
Foisson
X i ]LIF_':" Aiet—1)
Poisson( A) A x=0.1..- Y A\ Alef—1)

Negative Binomial

(i) ( ol ).'1' =01 | (@rg/p | (Drg/p® | (i) Ip/(1—qe))
T x—1 r_r—r f ;2 f = = £y dyr
NB(r,p) fii} .1 | P r=r.r4+l | (i)r/p [§1) e/ p~ (it} [pe” /(1 = ge®)]
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2.2 Discrete uniform distributions
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Definition Discrete uniform distribution
of discrete density functions

ol =1."2.coviil¥

|
) =fe; My ="
0

otherwise

*

Each member of the family

’=Ef{|.z,._.,mfﬂ1f),

where the parameter N ranges over the positive integers, is defined to have
a discrete uniform distribution. A random variable X having a density
given in Eq.  is called a discrete uniform random variable. /1]
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Theorem [f X has a discrete uniform distribution, then &[X] =
(N + 1)/2,

T | A
var [X] = (ﬁr___l and my(t) = &[] = ) &' —.
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Proof

Nl N+
&1X]= e ;
[X] E.*’N >

N 1 N+1)2
var [X] = &[X"] — (6[X])" = ZJLE"( 2 )

j=1
N(N + 1)(2N + 1) {N+1}3:{N+!]{N—l}
- 6N T4 12 '

N
X7 0 L
ﬂfi_ﬂ' ]'_ jglii hr' |"[J'|I"|I.'H
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2.3 Bernoulli and binomial distribution

Bernoulli density

0 ]

K Van Steen 33



Probability and Statistics Chapter 3: Parametric families of univariate distributions

Definition Bernoulli distribution A random variable X is defined
to have a Bernoulli distribution if the discrete density function of X Is

given by

Jx(x) = fx(x; p)
p’(l —=p)~* forx=0orl
= =p*(1 = p)' "0, 1(X),

0 otherwise

where the parameter p satisfies 0 <p < 1. 1 — p is often denoted by g.

/1
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Theorem If X has a Bernoulli distribution. then

S[X] = p, var [X] = pg, and my(t) = pe' + q.

PROOF &[X]=0-g+1-p=p.
var [X] = &[X*] — (S[X]D? =02 g+ 12 p— p* = pq.
my(t) = Ele™] = g + pe'. /1l
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Examples

EXAMPLE 1 A random experiment whose outcomes have been classified
into two categories, called *“success™ and ' failure,” represented by the
letters s and y, respectively, is called a Bernoulli trial. 1f a random
variable X is defined as 1 if a Bernoulli trial results in success and 0 if
the same Bernoulli trial results in failure, then X has a Bernoulli distribu-
tion with parameter p = P[success]|. I

EXAMPLE 2 For a given arbitrary probability space (Q, &/, P[-]) and for A
belonging to ./, define the random variable X to be the indicator function
of A; that is, X(w) = I (w); then X has a Bernoulli distribution with
parameter p = P[X = 1] = P[A4]. 1
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Binomial distribution

= - Y
| n=10,p =15 n=10p=_
1 ®
L ]
T l B & & & @ . X l_l_.[._.|\- l T 8 & - X
01 2 3 4 5 6 7T 8 910 01 2 34 5§ 6 7T B 910
&
L L
! n=5p=.1 gt=5p=4 n 3 p f
v ; = ]
v
I [ 4 - ] Tl - X I l * i
5 i 4 °
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Definition Binomial distribution A random variable X is defined to

have a binomial distribution if the discrete density function of X is given
by

R\ x n=x w
fx(ﬁ') =f-1.'{*r;”ap}=[(x)pq fﬂrl—ﬂ, | SR
l 0 otherwise

n _—
b ( )PI‘?" f:{:.I.....n}{I}q

X

Theorem If X has a binomial distribution, then

E[X]=np, var[X]=npg, and  my(1) = (q + pe')".
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Proof
! n = Sl £ TR o
my(1) = &[e'*] = xguErI(I)qu" * = x;}(x)(ﬁ'ﬁ'} q
= (pe' + q)".
Now
mYy (1) = npe'(pe' +q)""!
and
mi(r) = n(n — 1)(pe')’(pe' + q)"* + npe'(pe’ +q)"";
hence
E[X] = mx(0) = np
and

var [X] = &[X?] — (€[X))?

= mx(0) — (np)* = n(n — p? + np — (np)* = np(1 — p).

/1]
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Common statistics

Mean rp
Mode pn+1)—1<z<pn+l)
Range 0to N

Standard Deviation yro(l —p)
Coefficient of Variation ,/L =P

np
Skewness (-9
np(l —p)
: f 1
Kurtosis 3_H+m
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Cumulative distribution function

e The formula for the binomial cumulative probability function is

F(x,p,n)

T

2

i=0

(

T
i

) e —pe

e The following is the plot of the binomial cumulative distribution function.

Binomial COF (P=0.1, N=100]

0.75 1

Prabab ity
=
ih

025

10a

a 20 40 &l 80
X
Binomial CDF {P=0.50, N=100])
075
£
o
g 05
B
(=9
025
a = '." . .
a 20 40 x i) 81 104

Prabab ity

P riba bil ity

Binomial COF{P=025, N=100]

20 a0 » & 81 10d

Binomial COF{P=0.75, N=100)

K Van Steen

41



Probability and Statistics Chapter 3: Parametric families of univariate distributions

Example

* The binomial distribution is used when there are exactly two mutually
exclusive outcomes of a trial.

 These outcomes are appropriately labeled "success" and "failure".

e The binomial distribution is used to obtain the probability of observing x
successes in N trials, with the probability of success on a single trial
denoted by p.

o In a clinical trial, a patient’s condition may improve or not. We study the
number of patients who improved, not how much better they feel.

o Is a person ambitious or not? The binomial distribution describes the

number of ambitious persons, not how ambitious they are.

o In quality control we assess the number of defective items in a lot of
goods, irrespective of the type of defect.
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Consider sampling with replacement from an urn containing
M balls, K of which are defective. Let X represent the number of defec-
tive balls in a sample of size n. The individual draws are Bernoulli trials
where ““defective” corresponds to *‘success,” and the experiment of
taking a sample of size n with replacement consists of n repeated inde-
pendent Bernoulli trials where p = P[success] = K/M; so X has the
binomial distribution

(”)[EJI[I _E] i for x=0.1,....n,
x/ | M M
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Furthermore

e So the binomial distribution assumes that p is fixed for all trials.

 The binomial distribution reduces to the Bernoulli distribution when n=1.
Therefore, sometimes the Bernoulli distribution is called the point binomial
distribution

 From the graphical representations it is clear that the binomial distribution
first increases monotonically and then decreases monotonically

1]
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Binomial formulas

The number of ways of arranging k successes in a series of n
observations (with constant probability p of success) is the number of
possible combinations (unordered sequences).

This can be calculated with the binomial coefficient:

(HJ_ " Where k =0, 1, 2
A eteK=U1, &, ..., 0rn.
k ' (n—Fk)!
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o The binomial coefficient “n_choose_ k" uses the factorial notation

1"
o The factorial n! for any strictly positive whole number n is:

Mm=nxn-1)xn-2)x--- x3Ix2x1
o Forexample: 81=5x4x3x2x1=120

o Note that 0! = 1.
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The binomial coefficient counts the number of ways in which k
successes can be arranged among h observations.

The binomial probability P(X = k) is this count multiplied by the
probability of any specific arrangement of the k successes:

7 L L X P(X)
L\ n—
P(X=}t)—(k]}) (1-p) 0 | Cor’q"=q"

1 | Ciplg™!

2 ﬁcz qun—E
The probability that a binomial random variable takes any
range of values is the sum of each probability for getting k | nCepFg™
exactly that many successes in n observations.

n | ,.C,p"q°=p”

PX<2)=PX=0)+PX=1)+P(X=2)
Total 1
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2.4 Hypergeometric distribution

v 10 K 4:n A v 10 K d.n h

=y
-]
P |
=
e
¥ |

Example

Let X denote the number of defectives in a sample of size n when sampling is
done without replacement from an urn containing M balls, K of which are
defective. Then X has a hypergeometric distribution.
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Definition Hypergeometric distribution A random variabie X 1s
defined to have a hypergeometric distribution if the discrete density function

of X is given by
i K) M — K)
xi\n—x

fx(x: M, K, n) = { (M]

n

for x=0,1,...,n

\0 otherwise

K\(M — K)
x/\n—x, _
. A l‘LISI.I.....nl{“k':'
()
where M is a positive integer, K is a nonnegative integer that is at most M,
and » is a positive integer that is at most M. Any distribution function

defined by the density function given in Eq. above is called a hyper-
geomeltric distribution. ]
K'Van Steen
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Theorem If X is a hypergeomeltric distribution, then

K 4 o _Kf_ri-fu—H_M—n |
r‘i[}'{}=n'ﬁ an var [X] =n Y Y Vi

Proof

B8  xelecilss

n-—1
Kw—l)'M-—l-K-}—l)
K"“( ¥ n—1—y

--—H-E'}I-_G (M-—])
n—1
_ K
— /| JM’
, m b B ﬂ—l—b)
using ,-Z‘u(f) (m — f) : ( m
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SLX(X — 1)]
(K)(M—K)
7 X n— Xx
= x —1 —
XZ-DI{Y ] M)
n
( - 2)(;".4 —_ K)
K(K—-1) & \x—=2/\n—-x
= n(n — I]M(M— 1];}:‘2 M—Z)
n—2
(K-—'})(M— K+E] |
KK =1Yy"=¢ ¥ p—E=y ¥ 1 K(K —1)
=nn = D=1 2 M — z) =ntn =Ny
(n—l
K Van Steen
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Hence

var [X] = &[X?] — (6[X])? = E[X(X — D] + E[X] — (6[X])?

=s=Duar—n " "n " W
K ] K —1 EE}
=HE[{H—- }—-—M_l ~ W
_ nK [(M — K)(M — n)_‘
M [ M(M-1) | /1]
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Remark

e If we set K/M=p, then the mean of the hypergeometric distribution
coincides with the mean of the binomial distribution, and the variance of

the hypergeometric distribution is (M-n)/(M-1) times the variance of the

binomial distribution
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Example

« Gene Ontology Analysis:

http://www.livestockgenomics.csiro.au/courses/UAB Course/S14 GeneOntology.pdf

In a given list of genes of interest (eg. DE), is there
a Gene Ontology term that is more represented
than what it would be expected by chance only?

| he hypergeometnc distnbution anses tfrom sampling from a
fixed population.

20 white balls OO
out of — 'P

100 balls

« \WWe want to calculate the probability for drawing 7 or more white
halls out of 10 balls given the distrnibution of balls in the urn
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Hypergeometric test ... (see later) ... to determine whether a GO term is
overrepresented or not:

— f.iF W H—T
20 white balls OO | |
() Lzl x—z
Tt - :. P(z. i x) =
100 balls ~O | n)
I" :'IL- ._II
035
0.3

K Van Steen 55



Probability and Statistics

Chapter 3: Parametric families of univariate distributions

2.5 Poisson distribution
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Definition Poisson distribution A random variable X is defned to
have a Poisson distribution if the density of X is given by

= for x=D,L2,...'
X . lE'_J'Ax

Jr(x) = fy(x:4) = S x ! ‘f{ﬂ. 1,..0%),

0 otherwise

where the parameter A satisfies 4 > 0. The density given in Eq. (9) 1s
called a Poisson density. I/

Theorem Let X be a Poisson distributed random variable; then

E[X] = A, var [X] = 4, and my(t) =,
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Proof
() = 6l = § “E
gt = (le')* _ omighet.
=0 X!
hence,
mi(f) = Ae *e'e*
and
my(l) = le”%e'e**[Ae’ + 1].
So,
E[X] = mi(0) = A
and
var [X] = E[X2] = (C[X]D? =mi(0) — A2 = A[A+ 1] = A2 =4 1
K Van Steen
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Common statistics

Mean *

Mode For non-integer 4, it is the largest integer less than a.
For integer 1, x = aand x = »- 1 are both the mode.

Range 0 to positive infinity

Standard Deviation VA

. . . . 1
Coefficient of Variation 7
1

Skewness

>

o
+
S|

Kurtosis
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Probability and Statistics Chapter 3: Parametric families of univariate distributions

Cumulative distribution function

* The formula for the Poisson cumulative probability function is

an —J.NZ
a
FI[:I:, ;"‘) — Z T
=0
e The following is the plot of the Poisson cumulative distribution
; Foisson CDF (LAMBE DA = §) ; Folsson CDF (LAMBDA =15)
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Probability and Statistics Chapter 3: Parametric families of univariate distributions

Example

e The Poisson distribution is used to model the number of events occurring
within a given time interval.

vre 31 X > X
rI

0
* An event or happening may be a fatal traffic accident, a particle emission, a
meteorite collision, a flaw in length of a wire, etc, and is denoted by an x in
the graph above.
 Now assume that there exists a positive quantity v, which satisfies the

following properties (i) to (iii):
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Probability and Statistics Chapter 3: Parametric families of univariate distributions

(i) The probability that exactly one happening will occur in a small
time interval of length 4 is approximately equal to vh, or Plone happening
in interval of length h] = vh + o(h).

(ii) The probability of more than one happening in a small time interval
of length A is negligible when compared to the probability of just one
happening in the same time interval, or P[two or more happenings in
interval of length ] = o(h).

(iii) The numbers of happenings in nonoverlapping time intervals are
independent.

e o(h) = “some function of smaller order than h”:

o(h)
pm = =0

e v can be interpreted as the “mean rate at which events occur per unit of
time” and therefore usually referred to as the mean rate of occurrence
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Probability and Statistics Chapter 3: Parametric families of univariate distributions

Theorem If the above three assumptions are satisfied. the number of
occurrences of a happening in a period of time of length r has a Poisson
distribution with parameter 4 =vt. Or if the random variable Z(t)
denotes the number of occurrences of the happening in a time interval
of length t, then P[Z(t) = z] = e "(vt)*/z! for z = 1 T SE—
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Probability and Statistics Chapter 3: Parametric families of univariate distributions

Proof (important)

For convenience. let t be a point in time after time 0] so the
time interval (0, t] has length ¢, and the time interval (£, 1 + ] has length
h. Let P.(s) = P[Z(s) = n] = Plexactly n happenings in an interval of
length 5]; then

P,(t + h) =P[no happenings in interval (0, ¢ + h]]

— P[no happenings in (0, t] and no happenings in (1, t + h]]
_ P[no happenings in (0, t]]P[no happenings in (t, t + h]]
— P[}{”P{j{ﬁ}:

using (iii), the independence assumption.
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Probability and Statistics Chapter 3: Parametric families of univariate distributions

Now P[no happenings in (1,1 + h]] = 1 — P[one or more happenings
in (t, t+ h]] =1 — Plone happening in (t, t + £]] — P[more than one
happening in (1, t+h]l=1—vh—o(h) —o(h);: so Pyt + h) = Py(t)
[1 —vh — o(h) — o(h)], or

Py(t + h) — Py(t)
h

and on passing to the limit one obtains the differential equation Pg(t) =
— vP(1), whose solution is Py(t) = e "', using the condition Py(0) = 1.
Similarly, P,(t + h) = P,(t)Po(h) + Py(t)P,(h), or P\ (t + h) =P (t)[1 — vh
— o(h)] + Po(D)[vh + o(h)], which gives the differential equation P (1) =
— vP,(1) + vPy(1), the solution of which is given by P,(1) = vte™ "', using
the initial condition P,(0) =0. Continuing in a similar fashion one
obtains P/(t) = — vP,(t) + vP,_,(t), forn=2,3, ....

[t is seen that this system of differential equations is satisfied by
P.(1) = (vt)"e""/n!.

o(h) + ol(h)
h 2

= — vPy(1) — Py(t)
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Probability and Statistics
Chapter 3: Parametric families of univariate distributions

EXAMPLE Suppose that the average number of telephone calls arriving
at the switchboard of a small corporation is 30 calls per hour. (i) What
is the probability that no calls will arrive in a 3-minute period? (i1) What
is the probability that more than five calls will arrive ina 5-minute interval?
Assume that the number of calls arriving during any time period has a
Poisson distribution. Assume that time is measured in minutes; then 30
calls per hour is equivalent to .5 calls per minute, so the mean rate of

vi

occurrence is .5 per minute. P[no calls in 3-minute period] =e " =
E—l,.f-:u_.“-! - E,—I.S a 293,

- - ; . @ e~ Vi(y)
P[more than five calls in 5-minute interval] = ) —~Tr
k=06 .
C's E"[-5l{5]{2.5)k
=) ~ .042. I
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Probability and Statistics Chapter 3: Parametric families of univariate distributions

Remark

 The Poisson percent point function does not exist in simple closed form. It
is computed numerically.

e Because it is a discrete distribution, it is only defined for integer values of x,
the percent point function is not smooth in the way the percent point
function typically is for a continuous distribution
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Poisson PPF (LAMEDA = 3)
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